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Abstract 

The existence of a class of non-topological “string” soliton solutions is 
demonstrated. The string consists of a long, thin region of false vacuum 
supported against collapse by the pressure of massless particles trapped 
in its interior. It is shown that the string configuration is stabfe against 
decay into free particles. The stability of such “strings” to arbitrary small 
perturbations is analyzed and the solutions are shown to be unstable to 
the migration of charge along the string, leading to a conversion of the 
non-topological string into spherical non-topological solitons. 
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I. INTRODUCTION 

Recently there has been a great deal of interest in the possible role of topolog- 

ical solitons (e.g., the monopole solutions of t’Hooft’ and Polyakovz and the string 

solutions of Nielsen and Olesens) in cosmology. However, solitons can also be non- 

topological in nature. Friedberg, Lee, and Sirliu’ [FLS] demonstrated that such a 

class of complex scalar field soliton solutions in 3 spatial dimensions existed, and for 

a large enough charge were in fact stable, both classically and quantum mechani- 

cally, to arbitrary small perturbations in the fields. These spherical solutions could 

be thought to correspond to the monopoles of the topological case. There have re- 

cently been attempts to study the production of such object in cosmological phase 

transiti0ns.s 

In this paper we investigate the possible existence of non-topological string so- 

lutions, analogous to the topologically inspired vortex so1utions.s We demonstrate 

the existence of such solutions. As in FLS, the necessary conditions for having such 

solutions are: (1) the conservation of au additive quantum number Q, carried by some 

complex field C$ (in our discussion a scalar field), (2) the presence of a neutral (Q = 0) 

scalar field, Q, that acquires a non-zero vacuum expectation value in the classical 

ground state, and (3) the mass of the 4 field depends upon the vacuum expectation 

value of Q. 

FLS demonstrated the existence and stability of the finite, spherically-symmetric 

solutions. For Q > Qc, where Qc is some critical value for the charge, soliton 

solutions where Q = 0 (a local m&mum of the classical potential) in some localized 

region of space containing the charge Q will have a lower energy than the mass of 

Q free massive 4’s with cr equal to the global minimum of the classical potential. 

III this paper we study infinite, cylindrically-symmetric solutions. We find soliton 

configurations that have a lower energy than the free particle solutions, hence stab16 

against decay into free particles. However when we allow the charge to migrate along 

the string by perturbing the scalar field solutions, we find that for long wavelength 

perturbations, the effect is to cause the string “tension” to vary along its length, 

causing the string to pinch in regions of lower string tension. Thus the strings appear 

unstable to forming spheres. If we introduce a current along the string or give it some 

angular momentum, the effect is to mitigate, but not remove, the instability. 
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We will initially review FLS for we rely heavily on their analysis in this paper. 

Assume the system to exist of two scalar fields, 4 is complex and Q is hermitian. The 

Lagrangian density must have non-linear couplings in the fields for the existence of 

non-topological solutions. We assume 

L[lJs, CT] = p&la + g3GcT,a - fa21$b1’ - $2 - 0,‘)’ 

where f and 9 are dimensionless coupling constants, and oc has dimensions of energy 

and sets the scale of spontaneous symmetry breaking. We are using a metric signature 

(+, -, -, -). The theory possesses a discrete symmetry 

Q-+--Q 

and the U(1) symmetry 

q5 -+ exp( -iB)d. 

Hence, there exists a conserved current 8jP/i3x, = 0, where j, = i(Q 8,. c$), and the 

corresponding charge 

Qzi/d%js (2) 

is the constant of the motion. Now, since Q is a linear function of 4, the classical 

solution for Q # 0 must be time dependent, and for the lowest energy state 4 cc 

exp(-iwt). Scaling away the physical dimension and the coupling g, we introduce 

field variables A and B defined by 

4(r,t) = (5) (z) Bb)exd-4 (4) 

where A is real, B can be complex, p z pr, p = gnua, and m = furs is the mass of the 

neutral Q at the minimum of the classical potential. 

The equations of motion for A and B are 

ViV’A - K’B’A - iA(A’ - 1) = 0 

ViViB + n’A’B - vZB = 0 

(5) 

(6) 
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where n z m/p, v E w/p; and Vi is the gradient with respect to the dimensionless 

parameter p. The charge Q is found from Eq. (2): 

Q = +/d3pBz 

and the energy of the system is: 

d3p E 

where 

E = ~(ViA)’ + ~(ViB)’ + ~(~’ + KZA’)Ba + ~(A’ - 1)“. 

(7) 

Note how Y is to be interpreted as a function of Q and a functional of B(p). 

By using a variational approach FLS show the existence of the soliton solution. 

The free particle solution for Q charges, each of mass m, is E = Qm, where w = m 

and the corresponding infinite volume limits on the fields are A = 1, B = 0. Bearing 

in mind these boundary conditions on A and B, FLS assume, using spherically- 

symmetric trial functions 

‘= i-exp(-(r--R)/L) I 

TSR 
T>R 

(Bo/T) sin(wr) TSR 
0 T>R 

(9) 

(10) 

where T = lrl, R and L are two length parameters. R is the radius of the soliton, given 

by the first zero of B: B(R) = 0 implies R = n/w. L is the thickness of the domain 

wall separating the Q = 0 interior region of false vacuum from the 0 = ~0 exterior 

region of true vacuum. The thickness of the wall is expected to be L = O(l/gus). 

Bo can be related to the charge Q through Eq. (7): B. = (rp-‘)g(Q/Z)‘/“. The 

trial functions satisfy the equations of motion when r 5 R and approach the correct 

boundary condition at infinity, although the derivatives don’t match at T = R. 

For a given Q, FLS obtain the energy corresponding to the trial functions in 

Eqs. (9) and (10) 

s/L’ 11 E = % + $R3 + - [TRaL + ;RL’ + EL’] 
69 
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+ +- 
g2L 

R’+RL+;L’ . 1 
The first term in the energy is the kinetic energy of Q massless I$ particles confined 

to a region of size R. The second term is the false-vacuum potential energy of the 

c field in the interior region of the soliton. The other terms depending on L are 

contributions from the wall separating the two regions. 

Assuming Q is large, surface terms depending on L can be neglected and the trial 

functions result in an energy E = KQ/R + np4R3/6ga. Minimizing the energy with 

respect to R gives &in 21 (2Qg2)‘/‘/n, and the trial functions result in a ‘ground 

state’ energy Et,;.l = E(R,,,+.). Since the true energy must be less than the energy 

found with the trial functions 

Emin 5 E(R,,,i,) = ~~(2g')-'irQ3'r. 

This is less than the plane wave solution (E = Qm) when Q > Qs - (4rrp/3m)‘/2g’. 

Hence, when Q > Qs the soliton solution exists and is absolutely stable. The stability 

of the solitons is demonstrated in an extremely elegant proof. We will simply sketch 

the idea here, presenting a more complete analysis in Section 3. Under arbitrary 

variations 6A and bB from the solutions for A and B of Eqs. (5) and (6), the first 

order variation in E is zero, as A and B are solutions to the equations of motion. 

The sign of the second order variation in E for fixed Q determines whether the 

solutions are a local maxima or minima in the energy. If (J*E)q > 0, the perturbation 

leads to a higher energy state and the system wilI be perturbatively stable against 

such a perturbation. If (b”E)q < 0 however, the perturbation will lead to a new 

configuration of lower energy, so the original solution is unstable. FLS were able to 

demonstrate that any perturbation in A and B always lead to a higher energy state. 

The crucial reason for this Twasthat although the~perturbed soliton solution itself 

possessed negative eigenvalues when acted on by the Hamiltonian (which normally 

results in a growing unstable mode), ,this was always cancelled by a positive definite 

eigenvalue term arising from the condition of.charge conservation. Not allowing charge 

to leave the spherically symmetric soliton enforces it to remain in its lowest energy 

configuration. We will see in Section 3 that when the charge is allowed to migrate 

along the string, this second term vanishes, leaving us with a growing mode in the 

perturbation. 



The application of the above techniques to “string” configurations is given below. 

In Section 2, trial functions are obtained to demonstrate the possible existence of 

string solutions. In Section 3 we present a stability analysis of these configurations 

and discuss the effect angular momentum and current have on the string’s stability. 

Finally in the conclusions we discuss some of the implications of our results for the 

formation of such objects in the early Universe and address the issue of the formation 

of non-topological solitons in general. 

II. NON-TOPOLOGICAL SOLITON STRINGS 

The possible existence of string configurations can be seen by assuming cylindri- 

cally symmetric solutions in Eqs. (5) and (6). Again, using a variational approach we 

have trial solutions with cylindrical symmetry (here T = Jw) 

A = I ; -e-+~)/~ 
TSR 
TZR 

TSR 
T >_ R. (13) 

The solution for B(T, B, z) is obtained by demanding that B remains finite as p + 0. 

Then we obtain for a string with angular momentum n, carrying current j, = i(@ x 

4) = p’k/gz along the z-axis, the trial function 

B(p, 0, z) = BJ,,(yp) exp(in6’) exp(ikt) 

where ys = 12 - ka/p’ > 0. 

(14) 

J,,(T~) is the nth order Bessel function. The radius of the cylinder, po, is deter- 

mined by the first zero of the Bessel function, denoted as (x,: 

Jn(an) = 0 ==+ 7Po = %I. (15) 

Note that as n increases the size of the soliton solution increases (see Fig. l).s 

Now we can substitute these trial solutions into Eqs. (7) and (8) to obtain the 

charge and energy of such configurations. However as we are using an infinite string, 

we must evaluate quantities like the charge per unit length, (dQ/dz), the energy per 

6 



unit length, (&Y/G%), etc.; and compare these with the corresponding quantities for 

the free particle solution. Later we shall be investigating closed loops of string where 

the radius of curvature is large compared with the string width. In this regime the 

infinite string solution is a good approximation to the loop and we can deal in terms 

of total energy. 

For simplicity we initially investigate the case of no angular or z dependence on 

B. We then write 

B(P) = BOJO(~P). (16) 

Now the trial solutions in Eqs. (12) and (13) match at the boundary a0 = vpo = 2.405 

- the first zero of .&(vp) - although the derivatives are discontinuous at the boundary. 

Substituting Eq. (16) into Eq. (7) we can write A?,, in terms of Q, for a given 

charge Q, in dimensionless scale 7 and p (7 = .+A; p q up) 

dQ 27FY @I -=- 
I dv 9 o 

pdpB2 = ~B&;J;(~~). 

Using the trial functions of Eqs. (12) and (13), th e energy per unit length of the string 

is 

(W 
The larger the charge Q in the soliton, the larger the radius R, so for R > pL-l 21 L 

we can ignore the surface terms in Eq. (18) and write an upper bound for the energy 

density: 

Minimizing Eq..( 19) as a function of R, the minimum energy configuration is achieved 

when 
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which when substituted into Eq. (19) gives (again, ignoring the surface energy terms 

depending on L) 

(21) 

Note that the effective string tension (dE/dn) now depends on the string charge 

density (dQ/dn), so in principle it can vary along the length of the string. This is 

unlike the case of usual cosmic string solutions. Eq. (21) should be compared with 

the energy density of the plane wave solution for Q free particles 

dQ 
fm.2 =x 

cw 

where m = fp/g from Eqs. (3) and (4). The string-like soliton solution is stable 

against decay into free particles when it is formed with a lower energy density than 

the free-particle distribution. Comparing Eqs. (21) and (22), this occurs when 

Thus if the charge density at formation is larger than (dQ/dq)o, then it is energetically 

favorable to form soliton-strings. 

It is possible to obtain constraints on the coupling constants which allow string 

solutions. From Eq. (15) the radius of the cylinder is p. = a,,/~, and from Eq. (17) 

we have dQ/dq in terms of B,2, g’ and Y. Substituting Eq. (17) into Eq. (20) and 

equating R,,,i, to po we obtain 

Bo = [2va(J;(ao) + J,l(a,))]-I”. 

This is the value of BO when the string is in its minimum energy configuration for a 

given frequency Y. 

Substituting back into Eq. (17) for B,’ and into Eq.~(23) for dQ/dq we obtain the 

condition: 
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Equation (14) allows for both a 8 and z dependence to the string solution. The 

effect of giving the string some angular momentum (n is of course an integer in 

Eq. (14) in order that 4 is single valued) is to increase the radius of the cylinder for a 

given charge (see Fig. 1). This is just because the radius is proportional to the value 

of the first zero of the Bessel function J,,(an), and this increases with n. The physical 

picture follows basically that of n = 0. The charge density is modified from Eq. (17) 

to 

dQ 
;t;=gly 7r Rb:J:+*(4 (26) 

where a, is the first zero of the nth Bessel function. The energy density of Eq. (18) 

becomes (again, ignoring the surface contribution) 

dE dQ a,, 
z-y= & 0 1 

J:+d4 
= l+ J:+l(~ln) 1 (27) 

due to the presence of the ti dependence in B the condition for soliton strings becomes 

with 

Including a z-dependence in the solution, i.e. giving it a current, js, is in fact equiva- 

lent to Lorentz boosting the t-independent string solutions to a velocity (k/w). Hence 

the physics of the non-soliton strings with current can be related to the z-independent 

solutions. This fact is easy to see. Under a Lorentz transformation along the z-axis 

we have the relation between the original z-independent string in a frame (.z’,t’) and 

the Lorentz boosted coordinate frame (z, t) 

2 = 7(%-vvt) 

t’ = -y(t --II%) (30) 

where 7 = (1 - v2)-‘12, v = dz/dt. The energies in the two frames are also related by 

E’ = 7(E -VP.) (31) 
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where p, is the particle momentum in the z-direction. Equivalence of z-dependent 

and z-independent solutions is obtained by taking v = k/w, in Eq. (30). Taking 

E as in Eq. (8) with the appropriate k dependence, we see from Eq. (31) that this 

corresponds to an inertial frame energy E’ which corresponds to Eq. (8) without 

the k dependence. In the rest frame there is no current and so no z-dependence in 

Eq. (14). Thus we can always Lorentz boost our k-dependent solution to an inertial 

frame where there is no such dependence, and use our results of Eqs. (27) - (29). 

A useful exercise is to evaluate the stress-tensor T,,” for the string solutions. Using 

S = Jfid’zL where .C is given by Eq. (l), we have 

2 6.5 Tp = -- 
43 47, 

= 

Assuming the trial functions in Eqs. (12) and (13) we obtain for the region inside the 

string: 

p = Too = (&4)(ao~) - (%4(&47 - $w)(as~~ 

-(&d)(~*C) + (s’/~)4 

p, = T,. = 

‘I 

-(&d)(&F) - (s’/QG 
PO = Tee = (W)(alC) - (w(wJY + $4@%~ 

-(W)(U7 - (g’/Qd 

pz = Tzz = (W)(&4q - (&4)(W) - $%~)(a,~ 

+(W)(W’) - W/Qd. 

In the case where +(T, t) only these simplify to 

p = lW12 - (%4)(&C) + g1/8 4 

P. = lWIZ + (&4)(&q) - 9’/8 4 ” 

pe = pz = l~od12 - (&dl(&fl) - e”/8 ~6 
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Note that because of the radial and time dependence resulting from ,the charge of the 

4, the stress-energy tensor does not have the familiar cosmic string form. 

The analysis so far has concentrated on the non-topological string structures. As 

FLS demonstrated, spherically symmetric solutions also exist. For a given charge Q 

how does the energy of the spherical object of size R compare with that string loop 

of length P? 

Assuming an even distribution of charge along the loop we write 

dQ Q 
z = F’ 

Now from Eq. (21), for a loop with PL > 1, 

so using 7 = ,UZ we have upon integrating along the loop 

Similarly for the spherical solution of charge Q, the energy is (neglecting surface 

terms) [FLS]: 

(3’4 

where R, the radius of the sphere, is 

R = (QsV, 
P 

Hence we obtain the ratio 

Eloop p 113 
-c( - . 
E 4-c 0 R (37) 

This is only valid for large P, i.e. P > R, so as expected for a given charge Q, it is 

~,r energetically more favorable for the charge to be distributed in a sphere rather than 

in a string configuration. This doesn’t necessarily imply that a string configuration 

as described in this section will decay into spherkal objects. We must investigate 

the stability of these solutions to arbitrarily small perturbations in the fields. This is 

what we do in the following section. 
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III. STABILITY OF STRING SOLUTIONS 

In an extremely elegant proof FLS were able to demonstrate the classical stability 

of their spherical soliton configurations to arbitrary perturbations in the fields. We 

will follow their arguments here, showing where necessary how it changes when string 

configurations are allowed. 

From Eq. (1) the energy of the system is 

E = jd3z (l&#l’ - IVi$l’ + ;(&)’ - $‘i+ + V( 1dl,~,) 

where V(ldj,~) = f2u21#12 + (g’/S)(cG - ~2)~. 

Under arbitrary perturbations 

(33) 

#-+ ;= 4 + &(x7 4 

(r -+ lG= a+ba(x,t) 

where SC$ can be complex but 6~ must be real, we have 

(39) 

6E = 
I 

d”~[(&bd)(Pf) + (6’&)(B”6f) - (ViJd)(V’fl) - (Vi+)(V’Sf) 

+(8&)($~) - (vic7)(v’sc7) + v;&j + v;.&fP + V,lSu]. (40) 

Here Vi z dV/dd, Vi. E dV/dqP, and Vi E dV/du. 

We also know from Eq. (2) that 

Q = i /d’z(@ G 4). 

The requirement of charge conservation, 6Q = 0, becomes 

i d3z[&#&b+c+Yal,Sq%]=0. 
I 

Using the ansatz 

g5 = do(T) 9,~) exp( Gut) 

Q = QO(T,tJ,Z) 

charge conservation implies 

i / d% [-(,$0006~) + (@oSd) - iw(~oSY + q$h$)] = 0. 

(41) 

(42) 
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Upon substitution into Eq. (40) and after integrating by parts 

6E = J”z [(V;V’)& - ~‘4; + V,] Scj + [(V;V’)C#J~ - w240 + Vi.] 64 

+ [(viv’)ao + c] 6u, (43) 

where now Vi z dV/d+o, Vi. G dV/d&, and V,l s dV/dao. The first-order variation 

in E vanishes from the equations of motion as expected. We also expect momentum 

to be conserved when we perturb the fields; writing 

pi = 
J 

d3zToi 

we have from Eq. (32) 

pi = / 6’2 [(804)(ViV) + (a~f)(V&) + (~o~)(VP)I. 

Then we obtain 

6pi = 1”s [-iSw($, vi 4;) - 2iw(6~(V&) - SV(V&o))] 

(44) 

(45) 

with Boa = 0. Here we have used the fact that under a perturbation in C$ we expect 

the frequency w to also change: w + w. + 6~0. In fact from Eq. (7) we see how w is 

,to~ be interpreted as a function of Q and B. From Q = (w/pgr) JBplBIa 

SQ = 0 =+ 6wQ = -5 jPp(~6~’ + B’6B). 

We will investigate the case when all the perturbations are real and the A and B 

fields are real. This is sufficient to see where the instability arises in the case of 

string configurations. Equation (45) clearly vanishes in this case; momentum will 

automatically be conserved. 

The second variation of E is easily obtained from Eq. (40). Again we must use 

.Eq:(41) to substitute for the 6w terms. As in FLS we obtain for (6’E)o: i 

(62-%2 = Jd3z$TH+ + $ [/@z$Tb]a 

where 

+=($ b=(t) 
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and 

H = (ViVi) 

+ pu-co1 

( 

zpC$Po 

2f2d -aoa” + Zf’l@ + (g2/2)(3u2 - ui) 

Stability of a particular configuration is established by evaluating Eq. (47) or at 

least the sign of Eq. (47). If (PE)Q > 0 this implies that the perturbation has 

produced a new configuration of higher energy than the original string configuration, 

and so the original is stable. If however (6’E)q < 0 then the string configuration is 

unstable to such perturbations. FLS evaluated this by investigating the corresponding 

eigenvalue equation 

HIjt = -d=$,ldt” (50) 

or 

H$i = iii+; for +; - exp(i&t)$i(r) (51) 

where 4,; satisfies the usual boundary conditions of a SchrGlinger wave function. 

FLS were able to use translational invariance, to show A(p + c) and B(p + c) also 

satisfied the equations of motion for A and B (Eqs. (5) and (6)). For an infinitesimal E, 

the deviations from the original soliton solution A(p) and B(p) meant it was possible 

to construct three p-state eigenfunctions of H, all with zero eigenvalues. However 

the lowest s-state eigenvalue of H must be lower than the lowest p-state eigenvalue, 

hence H has at least one negative eigenvalue. They went on to demonstrate that 

for the particular cases they were interested in, the soliton solution indeed only had 

one negative eigenvalue. The proof that under arbitrary variations 6A and 6B, this 

meant that (6rE)q 2 0 is extremely elegant. The crucial equations for our purpose 

are their Eqs. (3.22) and (3.23) 

( ) 
~ (61E)~ = C’C’(ciM;j~j) 

i j 
(52) 

where the sums exclude zero Xi’s, and 

Mij = AiS, + 4Y3(Qg”)-‘bibj. (53) 
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The y are defined for an arbitrary eigenfunction $ by $(p) = x; &i(p) where & are 

a complete orthonormal set of real functions, bi is defined by a(p) = Ci b&(p) where 

a(p) is given in Eq. (48), and Xi is the set of eigenvalues satisfying Eq. (50), hence 

one of them is negative. The eigenvalues of Mij are then evaluated and shown to be 

always positive semi-definite. Physically what is occurring is that the first term in 

Eq. (52), which is negative for the ‘C corresponding to the s-state eigenfunction, is 

compensated for by the positive definite second term leading to a total (~‘E)Q > 0. 

The latter term comes from demanding charge conservation, and in the case of a 

spherically symmetric solution it can never be zero. 

The case for the non-topological string solutions is different. Looking at Eq. (49) 

we can rewrite the .Laplacian as: (Vf,,slV (P,sl + V,V”) where we are separating the 

(p, 0) components from the t-component. Now for a string along the z-axis there exists 

a two-dimensional translational invariance of A and B in the (p-8) plane (see Fig. 2). 

Again these ‘zero modes’ can be used to construct a p-state with zero eigenvalue. We 

can then again use an analogous argument to demonstrate that there then exists at 

least one negative eigenvalue for the (p - 8) component of H since the a-state must 

have lower energy than the p-state. Without going into a type of analysis that FLS 

performed we cannot say whether there exist more than one negative eigenvalue of H, 

however if there are at least 2 eigenfunctions of H that have negative eigenvalues, a 

suitable linear combination of these two eigenfunctions would allow the construction 

of an 1c, orthogonal to b, and from Eq. (47) the corresponding (~E)Q would be less 

than 0. 

The next step in the analysis is to investigate possible perturbations allowed by 

the equations of motion. One such perturbation arises from the following. If we have 

azimuthal symmetry in the B field, and the solution for B is independent of .e, then 

we can have a perturbation of the form: 

bB(p, 8, z) = cR(p, 8) cos(kz) (54) 

‘,where IsI < 1 and R(p,B) is the s-state eigenfunction that has a negative eigenvalue 

when acted upon by H. This type of perturbation is orthogonal to b, so the charge 

conservation term in Eq. (47) vanishes, leaving in>Eq. (52) 

Mij = Xibij + k1 
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where k2 comes from the V,V’ term in the laplacian of .Eq. (49) acting on Eq. (54). 

We can immediately see that for sufficiently small k”, i.e., long wavelength pertur- 

bations, the overall eigenvalue of Mij for the Xi corresponding to the s-state will 

remain negative, hence (6rE)~ < 0 for some perturbation. Only for small wavelength 

perturbations along the z-axis is the string solution stable. 

What is happening physically is that under perturbations of the fields along the 

z-axis, the charge is allowed to migrate along the string (Fig. 3). From Eq. (21) this 

means that the effective string tension, proportional to (dQ/dq)2/3, now varies along 

the string. Regions with a very small string tension which have lost charge become 

surrounded by regions with a high tension which have gained the charge. The result 

is that the low tension regions become pinched off and spherical solitons form with an 

intrinsic size - k-’ (see Fig. 4). Now, for large k, the charge barely migrates along 

the string, there is hardly any change in the string tension so the string configuration 

then remains stable. 

The case of complex B and 6B is more complicated, although the basic results go 

through as described above. For example if we allow solutions of the form 

Bb, 0) o( J,(v) exp(id’) (56) 

the result is to increase the radius of the string (Fig. 1). Now the negative eigenvalue 

still persists in that there is still a translational invariance in the p - 6’ plane. However 

the magnitude of the negative eigenvalue decreases, because of the o-dependence in 

the solution, and the “decay” rate of the string decreases, i.e. for a given k, as n 

increases it tahes longer to “pinch” the string. In fact the decay time goes roughly as 

tk - l/IX1 + k’ where X is the negative eigenvalue. So for decreasing 1x1, the decay 

time increases. 

It has previously been demonstrated that putting a current along the string .is 

equivalent to Lorentz boosting a string in an inertial frame with no current, to a frame 

moving with relative velocity k/w. Hence we expect the physics of the perturbation 

analysis when theresis no z-dependence on B to follow through even when there is 

initially a current present. 
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4. CONCLUSIONS 

In this paper we have discussed the possible existence of non-topological string 

structures. Although the energetics and equations of motion allow for them to be 

formed, it appears that they would be unstable to the formation of the FLS type 

solitons. There is no topological reason for their stability unlike the case of cosmic 

strings. One could be tempted to ask why there are stable flux tubes of liquid He, yet 

our solutions, even with angular momentum, appear unstable to perturbations in the 

scalar fields. The former are topologically stable in that they have a winding number 

that it is impossible to get rid of. ’ This is similar to the case of the U(1) cosmic 

string. The Higgs field which gives rise to the string is defined out to infinity, whereas 

as we have seen the scalar field which gives the non-topological string its shape is 

only defined out to the boundary of the string, going to zero past that (Fig. 5). The 

energy required to unwind a topological vortex is effectively infinite, whereas only a 

finite amount of energy is required to unwind a non-topological string. However, the 

wider the string, or the more angular momentum it has, the less unstable it becomes. 

It requires more energy to unwind such a string configuration. 

An interesting question which so far has only been partially addressed is the 

mechanism for the formation of non-topological solitons in the early Universe. A 

model has recently been proposed6 where the solitons can be thought of as regions 

of false vacuum surrounded by true vacuum, formed as the Universe cools below the 

Ginsburg temperature TG. The structure and distribution of the vacuum domains 

below To is estimated using percolation studies. 

It would be interesting to try and place soliton stars in some kind of standard 

electroweak model, as that would then increase the motivation for studying such 

objects. This work is currently in pr0gress.s 
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FIGURE CAPTIONS: 

1. Fig. 1: Trial functions B(p ,0) = B,,J,(rp) exp(in0) as a function of n. 

2. Fig. 2: String solutions are invariant with respect to a two-dimensional trans- 

lation in the ‘z - y’ plane. 

3. Fig. 3: Unstable perturbations of non-topological cosmic strings. The size of 

the x’s are meant to indicate the magnitude of the charge per unit length. 

4. Fig. 4: Non-topological cosmic strings pinch off into spherical non-topological 

solitons. 

5. Fig. 5: Comparison of topological cosmic strings and non-topological cosmic 

strings. 
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